The individual has over two decades of research expertise in the fields of gas turbine design, vehicle engineering, and the oil and gas industry, having worked with Textron, GE, and Siemens. The individual employed Finite Element Analysis (FEA) tools, specifically ANSYS, to address intricate issues within various domains. These domains encompass linear and nonlinear systems, composites, structural vibrations (including modal, harmonic, random, and shock load analysis), rotor dynamics (both lateral and torsional), fatigue and fracture mechanics, as well as implicit and explicit analysis. He serves as a consultant for several firms, such as APSCO (USA), TATA HITACHI (JAPAN), HYDRO (US), Sundyne, Premier pumps, Ruhrpumpen, WOM, Word pumps, among others.
The course was developed with the intention of catering to the needs of graduate students seeking to further their careers in the field of Finite Element Analysis (FEA), as well as design engineers who need to enhance their understanding of FEA principles and independently make informed judgments based on FEA results.
Based on his extensive teaching and research background, he had a comprehensive understanding of the knowledge acquisition process among students inside his educational institution and a keen awareness of the requisite abilities necessary for successful entry into the sector. This served as a source of motivation for him to develop an appropriate curriculum that would bridge the divide between the industry and the educational institution. The curriculum was constructed to allow students to go from foundational concepts to the point where they can solve intricate problems. Numerous individuals from diverse regions around the world derived significant advantages from his instructional sessions, including the incorporation of their own research findings into their Master's and Doctoral dissertations, as well as securing enhanced employment prospects inside reputable organizations. The training program is highly recommended for anybody seeking to transition their career from design to analytical domains.
Dr. Joel noted that a significant number of design engineers rely on expertise in finite element analysis (FEA) to make engineering assessments. He always maintains the belief that possessing a shared understanding of design principles and finite element analysis (FEA) is essential for engineers in order to cultivate the creation of efficient and impactful products. This course aims to enhance the comprehension of design engineers about fundamental and advanced principles in Finite Element Analysis (FEA), enabling them to effectively use FEA techniques in the component design process.
Write a public review